The actualization of affordances can often be accomplished in numerous, equifinal ways. For instance, an individual could discard an item in a rubbish bin by walking over and dropping it, or by throwing it from a distance. The aim of the current study was to investigate the behavioral dynamics associated with such metastability using a ball-to-bin transportation task. Using time-interval between sequential ball-presentation as a control parameter, participants transported balls from a pickup location to a drop-off bin 9m away. A high degree of variability in task-actualization was expected and found, and the Cusp Catatrophe model was used to understand how this behavioral variability emerged as a function of hard (time interval) and soft (e.g. motivation) task dynamic constraints. Simulations demonstrated that this two parameter state manifold could capture the wide range of participant behaviors, and explain how these behaviors naturally emerge in an under-constrained task context.
Keywords: affordances, dynamic systems, cusp catastrophe, dynamic modeling, simulations, constraints