The world of electronic sports (henceforth; e-sports) is a largely unexplored area even within traditional cognitive psychology. In rECS it is discounted, essentially, because it is performed on a screen and as such does not provide affordances per say. In agreement with this, you still cannot just ignore this massive field. It is not only entertainment, it is for some a way of life and it is for others their monthly income -both as creators as well as players. In an attempt to refrain from legitimising the field further, it stands for itself in the amount of hours played, the number of games produced, the amount of profit for gaming-companies and the prize-pools for e-sports players. One aspect however, that is unstated in the relevant literature, is that unbeknownst to producers and programmers of games, their absolute central aspects, follow exactly that of ecological psychology and rECS. Gibson (1986) made the same analogy, however with greater depth, for the fields of architecture and design.
A programmer creates the environment in which a player is to exist and, hopefully, immerse herself. The virtual environment is created in respect to contain virtual affordances for the player, or for the player to explore and act within. The evolution of computers, as well as the games played on these computers, have increasingly dealt with the fact that players expect more and more virtual affordances to be available to them. There is an expectation to be able to do more things, to increase the complexity of the virtual environment, virtual objects and other virtual agents. When expansions are released for already popular games, they account for this fact by not only adding new items, for example in MMORPGS (massively multiplayer online role-playing games), but also by creating new virtual affordances to players through new game modes (changing virtual affordances of the already known game), allowing completely new virtual behaviours and thus making the virtual environment increasingly complex. For games that insist on reflecting reality, the expectation is that virtual affordances should more and more closely resemble the environment. This is thus an essential area to account for when it comes to rECS and psychology in general. It is necessary however to introduce the term virtual affordances, because as stated, pictures, depictions and even movies do not present affordances (Gibson, 1986 and Wilson & Golonka, 2013). Nevertheless, computer gaming industry works with manipulation of virtual affordances, and thus, virtual affordances are defined as invariants programmed in environment, objects and agents, allowing, limiting or disallowing virtual behaviours, interactions and coupled systems between those environments, objects and agents.
The game of choice for exemplification, is League of Legends (launched 2009, by Riot Games, formed in 2006). It is played by 32 million unique players every month, 12 million of which play daily, racking up 1+ billion hours of play each month making it the most played computer game in the world (Riot Games, 2012). They have created a virtual environment in which there is an economic system; killing AI-agents and opponents grants money, from which you may buy items to further enhance your characters basic, level-dependent, properties. The virtual environment affords movement in two dimensions but also limits movement by walls and shrubbery. Each character, 110+ to choose from, is afforded five specific abilities (one passive, meaning it is not “usable” by pressing a button and four active abilities assigned to one key each) plus the choice of two out of thirteen that are common to all players. Some abilities modify movement capability of oneself, of other agents, amount of damage given, amount of damage taken and/or regeneration of vitals (health, mana or for a few characters, a specific other vital coupled to its offensive and/or defensive abilities). Two teams with five players on each team thus comprises (10*5*2) 100 agent-specific virtual affordances, coupled with the dynamic variety in which the virtual environment lends itself to each specific character. Needless to say, perceiving one’s own and other characters’ virtual affordances, in which sequence they are used, and in which situation, the dynamic relationship all these variables have in conjunction with where one is situated in the environment and your, and their, vitals, is what counts as skill in this game. It is a visual perception heavy game but auditory perception enables you to gain information on parts of the environment not currently in your virtual visual field but that may have an impact on your virtual behaviour. The mentioned variables are far from an exhaustive list; there are quite many more virtual affordances to be described, but these should be enough for even the most computer-illiterate to understand that it is far from a simple virtual environment to navigate through successfully. Thus, this complexity gives rise to a vast range of behaviours and emotions, one of the most extreme of which is called “rage-quitting”. It is when you are sufficiently angry, regardless of why, that you exit the game before completion and leave your team severely underpowered against the opponents. Similarly, it is what can be seen in real life interviews when interviewees physically leave the interview prematurely.
The game of choice for exemplification, is League of Legends (launched 2009, by Riot Games, formed in 2006). It is played by 32 million unique players every month, 12 million of which play daily, racking up 1+ billion hours of play each month making it the most played computer game in the world (Riot Games, 2012). They have created a virtual environment in which there is an economic system; killing AI-agents and opponents grants money, from which you may buy items to further enhance your characters basic, level-dependent, properties. The virtual environment affords movement in two dimensions but also limits movement by walls and shrubbery. Each character, 110+ to choose from, is afforded five specific abilities (one passive, meaning it is not “usable” by pressing a button and four active abilities assigned to one key each) plus the choice of two out of thirteen that are common to all players. Some abilities modify movement capability of oneself, of other agents, amount of damage given, amount of damage taken and/or regeneration of vitals (health, mana or for a few characters, a specific other vital coupled to its offensive and/or defensive abilities). Two teams with five players on each team thus comprises (10*5*2) 100 agent-specific virtual affordances, coupled with the dynamic variety in which the virtual environment lends itself to each specific character. Needless to say, perceiving one’s own and other characters’ virtual affordances, in which sequence they are used, and in which situation, the dynamic relationship all these variables have in conjunction with where one is situated in the environment and your, and their, vitals, is what counts as skill in this game. It is a visual perception heavy game but auditory perception enables you to gain information on parts of the environment not currently in your virtual visual field but that may have an impact on your virtual behaviour. The mentioned variables are far from an exhaustive list; there are quite many more virtual affordances to be described, but these should be enough for even the most computer-illiterate to understand that it is far from a simple virtual environment to navigate through successfully. Thus, this complexity gives rise to a vast range of behaviours and emotions, one of the most extreme of which is called “rage-quitting”. It is when you are sufficiently angry, regardless of why, that you exit the game before completion and leave your team severely underpowered against the opponents. Similarly, it is what can be seen in real life interviews when interviewees physically leave the interview prematurely.
Computer-gaming, although not adhering to the strict definitions of rECS, needs to be accounted for and it is suggested that it is sufficient to discriminate between real life and gaming by the verbal notation virtual. When experimentally reporting on computer games or screen-dependent research, it is of great importance to include an exhaustive list of variables and virtual affordances in the previously mentioned task analysis. This leads on to the study at hand, where an attempt is made to follow this task analysis for rECS experimentation, in order to show its practical application; to try and create headway for computer-screen experimentation by refuting the unwillingness within the embodied perspective towards it; discriminate between predictive and prospective strategies in problem-solving to discriminate between computational and ecological strategies; and illuminate how lucrative future research can be on the basis of both the process under observation and, more generally, to produce knowledge about it through rECS.
Thanks for another wonderful post. Where else could anybody get that type of info in such an ideal way of writing? beko ana bayi
ReplyDelete